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Abstract—In this work, we propose a numerical method to
obtain an unconditionally stable solution for the finite-differ-
ence time-domain (FDTD) method for the TE, case. This new
method does not utilize the customary explicit leapfrog time
scheme of the conventional FDTD method. Instead we solve the
time-domain Maxwell’s equations by expressing the transient
behaviors in terms of weighted Laguerre polynomials. By using
these orthonormal basis functions for the temporal variation,
the time derivatives can be handled analytically, which resultsin
an implicit relation. In this way, the time variable is eliminated
from the computations. By introducing the Galerkin temporal
testing procedure, the marching-on in time method is replaced by
a recursive relation between the different orders of the weighted
Laguerre polynomialsif theinput waveform is of arbitrary shape.
Since the weighted Laguerre polynomials converge to zero as
time progresses, the electric and magnetic fields when expanded
in a series of weighted Laguerre polynomials also converge to
zero. The other novelty of this approach is that, through the
use of the entire domain-weighted Laguerre polynomials for the
expansion of the temporal variation of the fields, the spatial and
the temporal variables can be separated. To verify the accuracy
and the efficiency of the proposed method, we compare the results
of the conventional FDTD method with the proposed method.

Index Terms—Finite difference time domain (FDTD), Laguerre
polynomials, unconditionally stable scheme.

I. INTRODUCTION

HE finite-difference time-domain (FDTD) method has

been widely used for the numerical anaysis of tran-
sient electromagnetic problems because it is conditionally
stable and very easy to implement [1]. Moreover, since it is
a time-domain technique, one single run of simulation can
provide much information over awide-band using a broad-band
excitation. However, since the FDTD method is an explicit
time-marching technique, its time step size should be limited
by the well-known Courant—Friedrich—Lecy (CFL) stability
condition. Since the time step is dependent on the smallest
length of the cell inacomputational domain, this CFL condition
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may be too restrictive to solve problems with fine structures,
such as thin material, slot, and via.

In recent times, to eliminate the CFL stability condition,
the alternating-direction-implicit (ADI) method was proposed
in order to formulate the implicit FDTD scheme [2]-{6]. The
resulting ADI-FDTD method was found to be unconditionally
stable. Therefore, one can use the larger value of the time step
rather than the CFL limit. However, the larger value of the time
step rather than the CFL limit results in a larger dispersion
error.

In this paper, we propose an unconditionally stable solution
procedure for the FDTD method for the two-dimensional (2-D)
TE. case using weighted Laguerre polynomials as temporal
basis and testing functions. Since Laguerre polynomials are
defined from ¢t = 0to ¢t = +oo, they are suitable for a causal
system [7], [8]. Laguerre polynomias of higher orders can
be generated recursively and are orthogonal with respect to
a weighting function in a function space defined through the
inner product of two continuous functions. Using the Laguerre
polynomials and the weighting function, one can construct a
set of orthogonal basis functions, which we call the weighted
Laguerre polynomials. Physical quantities that are functions
of time can be spanned in terms of these orthogonal basis
functions—weighted Laguerre polynomials. Note that the
weighted Laguerre polynomials are completely convergent to
zero ast — oo. Therefore, arbitrary quantities or functions
spanned by these basis functions are also convergent to zero as
time progresses. Using the Galerkin’s method, we introduce a
temporal testing procedure, which results in an implicit FDTD
formulation. By applying the temporal testing procedure to
the FDTD, one can eliminate the time-step limitation that is
the hallmark of the explicit time-domain technique. Instead of
the leapfrog procedure, we introduce a marching-on-in-order
of the basis functions. Therefore, we can obtain the unknown
coefficients for the basis functions from the zeroth order to
the V! order by solving recursively the FDTD with weighted
Laguerre polynomials. The minimum order or number of
basis functions is dependent on the time duration and the
frequency—bandwidth product of the problem.

When employing the conventional FDTD method, there is
no matrix inversion involved with this computation procedure.
However, the proposed method produces a banded sparse
system matrix and is independent of the time step. However,
this method al so uses the same system matrix regardless of the
order of basis functions to recursively solve for the unknowns.
Therefore, one can assemble this sparse system matrix only
once.
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The paper isorganized in thefollowing manner. In Section 1,
the formulations of the proposed FDTD are described. In Sec-
tion 111, the numerical results are presented. Finaly, in Sec-
tion 1V, we summarize some conclusions.

II. FDTD USING WEIGHTED LAGUERRE POLYNOMIALS AS
BASIS FUNCTIONS

A. FDTD With the TE. Case

With simple and |ossless media, the TE. model formulation
of the time-domain Maxwell’s equationsis

. 1 /0H,
1 OH,
By =¢ <_ dr Jy) @
. 1 [(OFE OF
H, =— r_
T < gy O ) ®

where e isthe electric permittivity and 1. isthe magnetic perme-
ability. An upper dot denotesthe derivative with respect to time.
Using the central difference scheme both on time and space,
(1)—(3) are discretized as
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For the above difference equations, (¢, j) is not area position
but an array index of each field variable, as shown in Fig. 1.
Fig. 1 shows the position of the electric and magnetic field
vector components over the 2-D cells. Az; and Ay; are the
lengths of the edge where the electric fields are located. Az;
and Ay, are the distances between the center nodes where the
magnetic fields are located.

In this paper, we use the dispersive boundary condition
(DBC) as an absorbing boundary condition (ABC) [9]. The
first-order DBC at x = 0 or X isgiven by
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Fig. 1. Position of thetransient electric and magnetic field vector components
onthe TE . plane.

Using the central difference scheme and the averaging tech-
nique, the difference relation of (9) at z = X (ori = I) can
be written as

n n—1 n n—1
Byl = Buli;—m (Ey[f—l,j — Byl ) (10)
where
Ax — v At
=—_- - 11
m Ax + v At (1)

Similarly, the difference relation of (9) at x = 0 (ori = 1) is

n n—1 n n—1
Ey[1,j = Ey[27j -n (Ey[&j - Ey[Lj ) (12)
Since the conventional 2-D FDTD method is an explicit time-
domain technique, itstime step is bounded by the CFL stability
condition as follows:

—1/2
1 1\? 1\?
At < — 13

where vy,.« isthe maximum phase vel ocity. Since the time step
isdependent on the smallest length of the cell in acomputational
domain, the CFL condition may be too restrictive to solve prob-
lems with fine structures, such as athin material, slot, and via.
So, in order to obtain an unconditionally stable solution
regardless of the time step size, we propose a new FDTD
algorithm in Section I1-B, which uses weighted L aguerre poly-
nomials as an entire domain temporal basis function.

B. FDTD Wth Weighted Laguerre Polynomials
Consider the set of polynomials defined by

t
Ly =S2 ety

= forp > 0;
P dtr p ="

t>0.  (14)
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These are Laguerre polynomials of order p that are causal,
which means that they exist for ¢ > 0. These polynomials
satisfy arecursive relationship given by

Lo (#) =1
Li(t)=1—t (15)
pLy () =@2p—1-t) L, 1 (t) = (p—1) Ly, 2 (1),
forp>2;, ¢t>0. (16)

The Laguerre polynomials are orthogonal with respect to the
weighting function ¢~¢, given by

/ e TLy, (t) Ly (t) dt = g (17)
0
where 6,, is a Kronecker delta for p = ¢ and zero oth-
erwise. Therefore, an orthonorma set of basis functions
{v0, ¥1, 2, ...} can be derived from (17) through the repre-
sentation

0p(t,s) = e V2L, (s t) (18)
where s > 0 is atime-scae factor. Note that these functions
are absolutely convergent to zero ast — oo. Hence arbitrary
functions spanned by these basis functions are also absolutely
convergent to zero ast — oo. These basis functions are also
orthogonal with respect to the scaled time variable ¢ as

| oo @i=s., (19)

where f = s - t isthe scaled time. Since the real time scaleis
quite small, in order to use the above basis functions properly,
one should transform the real time scale using an appropriate
scalefactor. These orthogonal functions can approximate causal
electromagnetic responses quite well. By controlling the time-
scale factor s, the support provided by the expansion can be
increased or decreased. Basis functions on the order of 04 are
plotted in Fig. 2. Ascan be seen, the functions given by (18) are
causal and convergent ast — co.

Using these basis functions, the tempora coefficients in
(1)—(3) can be expanded as

E;(rt) = B2 (r) ¢, (F)

(20)
p=0

Ey(r,t) =Y El(r)p, (D) (21)
p=0

H.(r,t) = HZ(r) ¢, (D). (22)
p=0

Notethat thetimevariable on theleft-hand sideis different from
the one on the right-hand side. In the above equations, ¢, (%)
can beregarded as an entire domain temporal basisfunction. To
apply (20)—<22) to (1)—(3) and (9), we expressthefirst derivative

Magnitude

¢ 5 10 15 20 25 30

Fig. 2. Weighted Laguerre polynomials of different orders.

of the field variables with respect to time ¢. In [8], we can show
that the first derivative of U(r, ¢) with respect totimet is

Ulr,t) = SZ (0.5Up (r) + z_: Uy (r)) ©p () (29)
p=0 k=0,p>0

where U(r,t) is a causal function. Inserting (20)—(22) into
(D—(3), respectively, we have

si (0.5E§f (r)+

p=

(24)

p—1

To eliminate the time-dependent terms ¢,, (), we introduce a
temporal Galerkin’stesting procedure of (24)—(26) by using the
orthogonal property of the weighted Laguerre functions. We
multiply both sides of (24)<26) by ¢, (t) and integrate over
t = [0,00). Then, we get

— 19
s | 0.5E%(r) + Efr) | = —HI(r)
_Ji )

e(r)

(27)
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The upper limit of infinity can be replaced by afinite time in-
terval 7%. Thisinterval is chosen in such a way that the wave-
forms of interest have practically decayed to zero. This is the
temporal testing procedure with respect to the basis function of
order g, ¢, (t). Rewriting (27)—29) in amatrix form, we have
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Fig. 3. Position of the electric and magnetic fields of the order ¢ onthe TE .
plane.

Contrary to the conventional FDTD difference, (4)—«6) and
(32)(34) have an implicit relation. Therefore, inserting (34)
into (32) and (33), and rewriting (32) and (33), we have

¥ hij—1 E;I:[Z’J_1+<CEI + J+C§{ i,j—l)
X Eg[ CH[Z 1_1 Zj+1
+C£{[i7j—1 y[i_1,j Cf[i,j—l y[i—l,j—l
_Cfli,j E'qli,j+ Hl ZIH-U
2
= —Ay; Jg[i,g’_W Z Ei[”
Y 1i,j k=0
_22 (B4, -H2, ) (39)
Of[ ij+1 CH[Z_lj z —1, 4L Of[z,] 2
CH[ Z 1,5 CHIZ—lj Yli—1,5
+<_—+Gf[i,j+af[il,j> EZ[”
T 45,5
- Cﬂf’[i,j EZ[H-U
2
=—Az; Jj i,j_w Z Ey i
Z 14,5 k=0
¢1
- 22 (H5[11_ H§[2—1J) (40)
k=0

From (39) and (40), we can find that each electric field vari-
able has the relationship with the adjacent six electric fields,
as shown in Fig. 3. Note that, in (39) and (40), the magnetic
fields are known because their orders are lower than those of



CHUNG et al.: AN UNCONDITIONALLY STABLE SCHEME FOR THE FDTD METHOD 701

the electric fields. Therefore, each row has seven nonzero terms.
Rewriting (39) and (40) as a matrix equation, we have
[AN{EY = (I} + {p7},

¢=0,1,2,... (41)

In(42), {E7} = {E%,E2}", and {J7} = {Jg,Jg}" isthe
term due to an incident electric current expressed in (30) and
(31). {771} isthe summation term from the order Oto g — 1.
However, inthe case of the boundary edges (perfect el ectric con-
ductor (PEC) and ABC), we need a different procedure. First,
in the case of the PEC boundary condition, all terms of its rows
and columns except its diagonal term should be replaced with
zero. Also, itsrow term of theforcing vectors {4} and {37~ }
should be zero.

In the case of the first-order DBC, inserting (23) into (9) and
applying the temporal testing procedure with ¢, (), we can
eliminate the time derivative. Then, at + = X, we obtain

q(py 171
%E; (r) + U—Sl <EJT() +> E (r)> =0. (42
k=0

Using the averaging technique and the central difference scheme
at anauxiliary grid point (I —1/2, j), wecan transform (42) into
a difference equation

ES[I,J' + Egllfl,j

E5[1_1/2,j = 5 (43)
9 EP[ _ Eé)!f,j B Elfl);lfl,j (44)
Qx YUI-1/24 Axr
- N E”I ) s = E’q '
<4U1 + Aa:) y[[,g + <4111 Aa:) y[171,]
s
— k k
_._szk_o(f%[Lj4—IQJI_IJ).
(45)

Similarly, at = = 0, we have the ABC difference eguation as
follows:

s 1 S 1
— 4+ | B9 —— | EY}_
<4vl + Ax) yllﬂ + <4vl Ax) yl?:ﬂ

q—1
S

- _ k k
- 2wy Pt (EUFQ,j + Ey ;1,3')' (46)

Inserting (45), (46), and the PEC boundary condition into (41),
we have a modified matrix equation as follows:

(4] oy = {77} + {5},

Contrary to the conventional FDTD method, the proposed
method has an implicit relationship between the field variables,

which results in a sparse system matrix [A} . However, one can

¢=0,1,2,... (47

observe that the system matrix | A| isindependent of the order

g of the temporal testing function ¢, (¢). Note that the stability
is no longer affected by the time step size. In our method, the

time step isused only to calculate the Laguerre coefficients due
to the excitation in (30) and (31), at the start of the computa-
tions. Therefore, one can choose asmall value of At to evaluate
(30) and (31) accurately, which does not increase the computing
time.

In (47), since < .J¢ } isaknown vector, if we know the coeffi-
cientsfor the electric fieldsfrom order 0to ¢ — 1, one can solve
(47). Inserting ¢ = 0 into (47) and rewriting (47), we obtain

=79

because { 3!} = 0. Since {jo is a known vector, we can
obtain { £°} easily by solving the matrix (48).

Since at each recursion the proposed method uses the same
system matrix first, one can perform the lower—upper (LU)
decomposition of |A| only once at the beginning of the
computation step. One can then solve (47) by using the back-
substitution routine repeatedly. The magnetic fields can be
obtained from (34).

In Section 11-C, we explain up to what order of the temporal
basis functions one should consider. This parameter isrelated to
the accuracy of the solution regardless of the stability condition.

(48)

C. Choice of the Number of Temporal Basis Functions

It is assumed that the signal that we are interested in char-
acterizing is practically band-limited up to a frequency B. In
addition, we are also interested in generating the same signal in
the time domain up to the time duration 7. Then, we represent
the real-time signal P(t) by a Fourier series

P (t) — Z C’ucj'u,wot (49)

where wy = 2x/T}. Since P(t) isreal, C;; = C_,, where x
means conjugate transpose. If P(¢) is band-limited to B Hertz,
then the value of « can be fixed by

u
-B< — < B.
<7, < (50)
Therefore, we have
BT,
P(t) = Z C,eluwot, (51)
u:—BTf

In (51), there are 2BT, + 1 terms in the expansion of P(t).
Hence, the minimum number of temporal basis functionsis

Np =2BTy +1. (52)
In order to obtain an accurate solution, therefore, one should
solve (47) recursively at least IV, times. Therefore, if we want
to observe the transient response at a spatial location due to an
incident field of bandwidth 25, then we need at least 2577 + 1
termsof the Laguerre seriesto completely characterize that tem-
poral waveform of duration 1 and bandwidth 2B, irrespective
of its shape.
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Fig.4. 2-D parallel plate waveguidewith thelength 1.0 m and thewidth 0.1 m.
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Fig. 5. Transient electric fields of the y component (a) at p, and (b) at p-.

D. Calculation of Electric and Magnetic Fields

By solving (47) recursively, we obtain the coefficients of each
temporal basis function, which are the expansion coefficients of
the electric and magnetic fields. From (20)—(22), we obtain

Ny,

Ea:[zj (t) = Z Eg:)[zj ep (1) (53)
p=0
Ni

By, (6) =) E|. ¢p(® (54)
p=0
Ni

HZ[i,,j (t) = Z HfL,J ep (1) (55

=0

(b)

Fig. 6. 2-D parallel plate waveguide with the thin PEC slot of the thickness
1.0 um and the distance 1.0 cm. (a8) Computational domain. (b) Graded
discretization in the vicinity of the slot.

In (18), one can see that EE?;O ¢p (£) = 0. So, we can observe
that the electric and magnetic fields obtained from the above
equations are unconditionally stable because they are spanned

by a set of absolutely convergent basis functionsast — cc.

I11. NUMERICAL EXAMPLES

In this section, 2-D paralel plate waveguides for the TE,
case are tested to validate our method. In this paper, we use
thefollowing sinusoidally modul ated Gaussian pulse asan input

electric current profile:
2
c) ) sin(2n f. (t —T,)) (56)

Jy () = exp <— <t _TdT

where
T, — 1
YA
T, = 31y. (57)

Inthispaper, weuse f. = 1 GHz, and wechoose Iy = 11.71ns
and B = 5 GHz. Inserting 1’y and B into (52), we can evaluate
the number of the weighted L aguerre polynomial functions, and
we choose N;, = 150. Also, thetime-scalefactor iss = 6.07 x
1010,

Asthe first example, we consider a 2-D parallel plate wave-
guide as shown in Fig. 4. There are 100 and 10 uniform subdi-
visions along the z and y directions, respectively. The cell size
is0.01 m x 0.01 m. The ¥ component of the electric current is
located on the excitation line, and there are two measurement
points, p; and p». The first-order dispersive boundary condi-
tions are set at the x-directiona terminals of the domain, and
weuse vy = ¢g.

Fig. 5 showsthe  components of the electric fieldsat p; and
p2. The agreement between the conventional FDTD method and
the proposed method is very good. The CFL stability condition
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of this model is At < 23.57 ps. The time step size for the
proposed methodis At = 10.0 psin order to accurately eval uate
(30) and (31), which hardly increases the computing time.

As the next example, we consider a 2-D parallel plate wave-
guide with a thin PEC dlot, as shown in Fig. 6(a). In order to
model this thin conductor plate of width 1.0 zm, we use the
graded mesh as shown in Fig. 6(b). A very small cell is placed
around the dot. Inthe PEC plate model, the PEC plateisdivided
into two cells, and the minimum cell sizeis 0.5 ymx 0.005 m.
There are 120 and 12 subdivisions along the = and y direc-
tions, respectively. The CFL stability condition of this model
is At < 3.333 fs. The time step size chosen for the proposed
method is At = 10.0 ps to calculate the Laguerre coefficients
of the excitation pulse, which is small enough to evaluate (30)
and (31). Fig. 7 shows the ¥ components of the electric fields
at p; and po, respectively. The agreement between the conven-
tional FDTD method and the proposed method is very good.
Table | represents the required computational resource and the
computing time for the numerical simulations. Since the pro-
posed method requires asmaller number of iterations than those
of the conventional FDTD method, the CPU time for the pro-
posed method can be reduced to about 1.26% of the original
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TABLE |
COMPARISON OF THE COMPUTATIONAL EFFORTS FOR THE PARALLEL PLATE
WAVEGUIDE WITH A THIN SLOT IN A CONDUCTOR

At No. of iterations | CPU time
FDTD 333 fs 3570699 214 s
Our Method 10 ps 151 2.7s

FDTD method while maintaining the high accuracy. Therefore,
by not using the CFL stability conditions and completely elim-
inating the time variable from the computations of the updating
of the electric and the magnetic fields, the computation of the
proposed method is less than the computation time of a conven-
tional FDTD method by at least two orders of magnitude. All
calculationsin this paper have been performed on an Intel Pen-
tium 1V 2.2-GHz machine.

IV. CONCLUSION

An unconditionally stable solution for the FDTD algorithm
has been proposed for the 2-D TE.. case with fine structures.
To model a very thin conductor slot, graded discretization
modeling has been employed to provide more flexibility. We
utilize a marching-on-in-order method to solve the FDTD
with weighted Laguerre polynomials. As entire domain tem-
poral basis and testing functions, the advantages of using
the weighted Laguerre polynomials are: 1) it guarantees an
unconditional stability; 2) the solution is independent of the
time discretization; 3) the temporal derivatives can be treated
analytically; and 4) most importantly, from a computational
standpoint, the spatial and the temporal variables can be sepa-
rated, resulting in an efficient and accurate solution. Transient
fields obtained by the present method are unconditionally
stable regardless of the time step size. Moreover, the agreement
between the results obtained using the proposed method and
the conventional FDTD method is very good. Currently, it is
being extended to three-dimensional problems.
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